Interleukin 10 suppresses tumor growth and metastasis of human melanoma cells: potential inhibition of angiogenesis.
نویسندگان
چکیده
Interleukin 10 (IL-10) inhibits the production of a wide range of cytokines in various cell types. The purpose of this study was to determine whether the expression of the IL-10 gene can influence tumor growth and metastatic properties of human melanoma cells. The human melanoma cell line, A375P, which does not produce endogenous IL-10, was transfected with a hygromycin expression vector (control) or a vector containing full-length murine IL-10 cDNA. A375P parental cells, A375P-Hygro, and A375P-IL-10-positive cells were injected s.c. and i.v. into nude mice. A375P-IL-10 cells produced significantly slower growing s.c. tumors and fewer lung metastases than control cells. The tumorigenicity of the human melanoma A375SM and the murine melanoma B16-BL6 cells was also significantly inhibited when they were admixed with A375P-IL-10 but not with A375P-Hygro before s. c. injection into nude mice. The suppression of tumor growth and metastasis was directly correlated with a decrease in neovascularity determined by immunostaining with anti-factor VIII. Because tumor-associated macrophages are the major source of angiogenic molecules in melanoma, we used reverse transcription-PCR to demonstrate that IL-10 down-regulates the production of vascular endothelial growth factor, the most potent angiogenic factor in activated macrophages. Other factors involved in angiogenesis such as IL-1beta, tumor necrosis factor-alpha, IL-6, and the proteinase matrix metalloproteinase-9 were also inhibited in activated macrophages by supernatants from A375P-IL-10 cells. Collectively, these data suggest that the production of IL-10 by tumor cells inhibits macrophages-derived angiogenic factors, and hence, tumor growth and metastasis.
منابع مشابه
Standardized Punica Granatum Pericarp Extract, Suppresses Tumor Proliferation and Angiogenesis in a Mouse Model of Melanoma: Possible Involvement of PPARα and PPARγ Pathways
Melanoma is a challenging disease to treat. Punica granatum L. has a potential anticancer effect. This study determined the antiproliferative and antiangiogenic potential of the extract from pomegranate peel (PPE) in melanoma. Melanoma cells (1 × 106) were injected to C57BL6 mice subcutaneously. On 8th day, mice were randomly divided into 9 groups. Group 1 was considered as control and received...
متن کاملStandardized Punica Granatum Pericarp Extract, Suppresses Tumor Proliferation and Angiogenesis in a Mouse Model of Melanoma: Possible Involvement of PPARα and PPARγ Pathways
Melanoma is a challenging disease to treat. Punica granatum L. has a potential anticancer effect. This study determined the antiproliferative and antiangiogenic potential of the extract from pomegranate peel (PPE) in melanoma. Melanoma cells (1 × 106) were injected to C57BL6 mice subcutaneously. On 8th day, mice were randomly divided into 9 groups. Group 1 was considered as control and received...
متن کاملP105: Inhibition of Vasculogenic Mimicry in a Three-Dimensional Culture in Glioblastoma
Glioblastoma is one of the most common primary brain tumors (80% of patients) that has a poor prognosis due to malignancy. Glioblastoma has an annual incidence of 5.26 per 100 000 population or 17 000 new diagnoses per year and so as the population aging, the number of patients is expected to increase. There is a growing body of literature investigating the tumor microenvironmenta...
متن کاملThe role of microRNA-30a and downstream snail1 on the growth and metastasis of melanoma tumor
Objective(s): Growing evidences have indicated microRNAs as modulators of tumor development and aggression. On the other hand, a phenomenon known as epithelial-mesenchymal transition (EMT) that indicates a transient phase from epithelial-like features to mesenchymal phenotype is a key player in tumor progression. In this study, we aimed to assess the potential impacts...
متن کاملVascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts.
Angiogenesis is a significant prognostic factor in melanoma, but the angiogenic factors controlling the neovascularization are not well defined. The purpose of this study was to investigate whether the angiogenesis and metastasis of melanoma are promoted by vascular endothelial growth factor (VEGF), interleukin 8 (IL-8), platelet-derived endothelial cell growth factor (PD-ECGF), and/or basic fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 2 12 شماره
صفحات -
تاریخ انتشار 1996